

Journal of Anatomical Sciences

 ${\it Email: an atomic al journal @gmail.com}$

J Anat Sci 10 (2)

ABSTRACT

Relationship between Low Back Pain and Selected Anthropometric Parameters

Oyakhire MO, Amasiatu VC and Sampson D Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port-Harcourt, Rivers State, Nigeria.

Corresponding Author: Oyakhire MO E-mail: ovbiadolor@gmail.com; +234 8033419605

This study was done to evaluate the relationship between low back pain (LBP) duration and selected anthropometric parameters. A total of 990 Participants, comprising 685 male and 305 female subjects were recruited by convenient purposive sampling method after detailed explanation of research procedure and informed consent. The following parameters were measured; height, weight, waist circumference and hip circumference. Results were presented in descriptive statistics for measured anthropometric parameters. Analysis of variance (ANOVA) and chi-square (X^2) tests were done to determine the relationship between low back pain and the anthropometric variables. There was significant association between occupation, age and duration of LBP, in particular, for periods between 3 and 12 months. In addition, the variables; occupation, body mass index (BMI) and age (in categories), showed significant association with LBP, while for waist hip ratio (WHR) statistically significant difference was observed for 3, 6 and 9 months. The differences between sex and duration of LBP were not statistically significant.

These findings will be useful to orthopedic and trauma surgeons as well as Occupational health physicians in the management of low back pain.

Key words: Low Back Pain, occupation, age, WHR, BMI

INTRODUCTION

Low back pain has become a public health issue with remarkable social and economic implications. It involves many factors in terms of etiology since it occurs in different groups and in working populations. In clinical anatomy, low back pain (LBP) may be defined as pain and discomfort below the lower back and frequently involves a number of anatomical structures.^[1]

Studies on LBP have established that it is a major cause of absenteeism and income loss at personal, family and country levels. ^{[2], [3]} It is one of the reasons for most hospital visits with an estimated 6-7% of adult populations consulting a general practitioner annually. It has also been estimated that up to 60-80% of population will at some point in their lives, experience back pain. ^[4]

As part of the Global Burden of Disease Study (GBD) 2010, Expert Group showed that low back pain is among the top ten high burden diseases and injuries, with an average number of DALYs (disability-adjusted life years) higher than HIV, tuberculosis, lung cancer and preterm birth complications.^[5]

A number of factors such as neoplasm or infection as well as pregnancy can cause low back pain. Nearly half of all pregnant women report pain in the lower back or sacral area during pregnancy, due to changes in their posture and center of gravity causing muscle and ligament strain.^[6] In most cases (85-95%), the specific cause of low back pain is unknown.^[7]

LBP can be classified according to duration into acute, sub-chronic or chronic. ^{[9], [10]} The specific duration required to meet each of these is not universally agreed upon, but generally pain lasting less than six weeks is classified as acute, pain lasting six to twelve weeks is sub-chronic, and more than twelve weeks is chronic. ^{[11],} This study was therefore carried out to determine how anthropometric indices of body proportion correlate with duration of low back pain among workers in Port Harcourt between the age of 19-65 years.

MATERIALS AND METHODS

Study Design: The study was a cross sectional survey involving 990 randomly selected participants subdivided into four group of workers; 190 farmers (91 males; 99 females), 200 technicians (all males), 200 drivers (all males), 200 office workers (97 males; 103 females) and a control group made up of 200 subjects (97 males; 103 females) within the age of 19–65 years. Subjects were recruited from Mechanic village Elekahia, Rumokoro and Mile One motor park, Rivers State secretariat complex, Moscow Road Lagos, Rumuola secretariat and University of Port Harcourt. Subjects were again divided into four groups based on age, that is, 19-29,29-39, 39-49, 50 + years. A Modified Standardized Nordic questionnaire was used to collect data on duration of low back pain, and anthropometric indices.

Inclusion Criteria

1. Only Nigerian workers within the stipulated age range (19–65 years) were selected.

Exclusion Criteria

- 1. Volunteers with acquired or congenital musculo-skeletal disorders were excluded.
- 2. Those with congenital deformities of the spine were excluded.
- 3. Other volunteers with devices and implants were excluded.

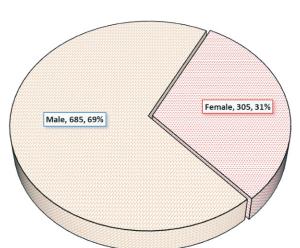
Procedure

The questionnaire used in the current study was a slightly modified version of the "Standardized Nordic Questionnaire" on LBP. An illustrated part was added to collect information on LBP. The questions about low back pain during the past 3 months, during the past 6 months, past 9 month, and during the past 12 months were phrased with dichotomized answer alternatives "yes" and "no". The following information was provided: Sociodemographic data: age, sex, occupation. were collected.

Following standard protocol, the following

anthropometric variables were measured: weight was measured in kilograms (kg) using a weighing scale, height was measured in meters (m) using a stadiometer. Measurements were done to the nearest 0.01m for height and 0.01 kg for weight. Body Mass Index (BMI) was calculated using following expression;

$$BMI = \frac{weight (kg)}{(height)^2} = kg/m^2$$


Waist circumference was measured using a tape placed at the mid axillary line while the subject is in a standing position. Hip circumference was measured in centimeter (cm) as the widest area of the hip using a tape.

Waist-to-hip ratio was determined by dividing waist circumference by hip circumference; WHR=WC/HC.

Data Analysis: Data was analyzed using SPSS (Statistical Package for the Social Sciences) version 22.0 and Microsoft Excel 2013 Edition. Continuous variables were summarized in descriptive statistics. Chi square analysis was done to establish the relationships between low back pain duration and measured categorical variables. ANOVA (analysis of variance) was done to determine the relationship between measured variables and occupation, followed by post hoc (Dunnet) test (in the case of significant differences).

RESULTS

Descriptive Statistics

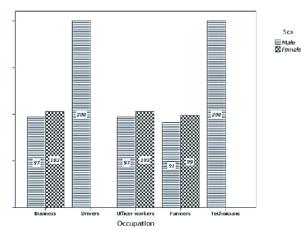


Figure 2: shows distribution of job description by sex.

Figure 1: shows the sex distribution of the samples.

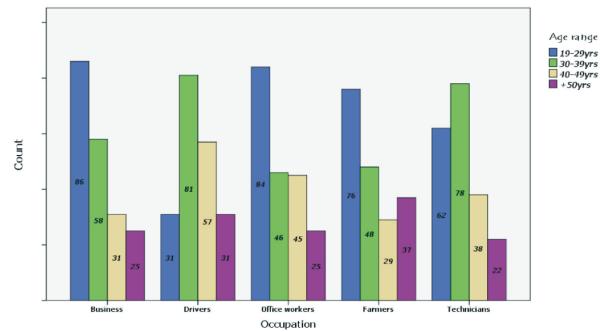


Figure 3: shows the distribution of job description by age group.

Inferential Statistics

Table 1: Test of association between job description and age of workers

			Age	range		Total		Chi-squ	uare test P	
		19- 29yrs	30- 39yrs	40- 49yrs	+50yr s		d f	Chi-Square value	value (2- sided)	Inferen ce
	Count	86 (8.7%)	58 (5.9%)	31 (3.1%)	25 (2.5%)					
Business	% within Occupation	43.00	29.00 %	15.50	12.50	200 (20.2%)				
	% within Age range	25.40 %	18.60 %	15.50 %	17.90 %	· · · ·				
	Count (%)	31 (3.1%)	81 (8.2%)	57 (5.8%)	31 (3.1%)					
Drivers	% within Occupation	15.50 %	40.50 % 26.00	28.50 % 28.50	15.50 % 22.10	200 (20.2%)				
	% within Age range Count (%)	9.10% 84 (8.5%)	20.00 % 46 (4.6%)	28.30 % 45 (4.5%)	22.10 % 25 (2.5%)					Signifi
Officer workers	% within Occupation	42.00 %	23.00 %	22.50 %	12.50 %	200 (20.2%)	1 2	65.256	<0.00 01	Signifi cant associa
	% within Age range Count (%)	24.80 % 76 (7.7%)	14.80 % 48 (4.8%)	22.50 % 29 (2.9%)	17.90 % 37 (3.7%)					tion
Farmers	% within Occupation % within Age range	40.00 % 22.40 %	25.30 % 15.40 %	15.30 % 14.50 %	19.50 % 26.40 %	190 (19.2%)				
	Count (%)	62 (6.3%)	78 (7.9%)	38 (3.8%)	22 (2.2%)					
Technicia ns	% within Occupation % within Age range	31.00 % 18.30 %	39.00 % 25.10 %	19.00 % 19.00 %	11.00 % 15.70 %	200 (20.2%)				
Total	Count (%)	339 (34.2 %)	311 (31.4 %)	200 (20.2 %)	140 (14.1 %)	990 (100%)				

	1	ain duration)nths)	Total		Chi-Square Te	sts	Inference
	Yes	No		df	Chi-Square value	P-Value (2-sided)	
Business (%)	85 (8.6%)	115 (11.6%)	200 (20.2%)				
Drivers (%)	102 (10.3%)	98 (9.9%)	200 (20.2%)				
Officer workers (%)	96 (9.7%)	104 (10.5%)	200 (20.2%)	4	68.426	< 0.001	Sig. association
Farmers (%)	153 (15.5%)	37 (3.7%)	190 (19.2%)				association
Technicians (%)	115 (11.6%)	85 (8.6%)	200 (20.2%)				
Total (%)	551 (55.7%)	439 (44.3%)	990 (100%)				

Table 2: Test of association between occupation and 3 months duration of low back pain

Table 3: Test of association between occupation and 6months duration of low back pain

	1	ain duration onths)	Total		Chi-Square Te	Inference	
	Yes	No	Totai	df	Chi-Square value	P-Value (2-sided)	
Business (%)	87 (8.8%)	113 (11.4%)	200 (20.2%)				
Drivers (%)	107 (10.8%)	93 (9.4%)	200 (20.2%)				
Officer workers (%)	93 (9.4%)	107 (10.8%)	200 (20.2%)	4	43.155	< 0.001	Sig.
Farmers (%)	140 (14.1%)	50 (5.1%)	190 (19.2%)				association
Technicians (%)	110 (11.1%)	90 (9.1%)	200 (20.2%)				
Total (%)	537 (54.2%)	453 (45.8%)	990 (100%)				

Table 4: Test of association between occupation and 9 months duration of low back pain

	Low back pain duration (9m0nths)				Chi-Square T		
	Yes	No	Total	df	Chi-Square value	P-Value (2-sided)	Inference
Business (%)	76 (7.7%)	124 (12.5%)	200 (20.2%)				
Drivers (%)	107 (10.8%)	93 (9.4%)	200 (20.2%)				
Officer workers (%)	80 (8.1%)	120 (12.1%)	200 (20.2%)	4	52.996	< 0.001	Sig. association
Farmers (%)	134 (13.5%)	56 (5.7%)	190 (19.2%)				association
Technicians (%)	106 (10.7%)	94 (9.5%)	200 (20.2%)				
Total (%)	503 (50.8%)	487 (49.2%)	990 (100%)				

	Low back pain duration (12months)				Chi-Square Tes	sts	* 0
	Yes	No	Total	df	Chi-Square value	P-Value (2-sided)	Inference
Business (%)	63 (6.4%)	137 (13.8%)	200 (20.2%)				
Drivers (%)	96 (9.7%)	104 (10.5%)	200 (20.2%)				
Officer workers (%)	73 (7.4%)	127 (12.8%)	200 (20.2%)	4	61.465	< 0.001	Sig.
Farmers (%)	129 (13%)	61 (6.2%)	190 (19.2%)	·	011102	01001	association
Technicians (%)	96 (9.7%)	104 (10.5%)	200 (20.2%)				
Total (%)	457 (46.2%)	533 (53.8%)	990 (100%)				

Table 5: Test of association between occupation and 12 months duration of low back pain

Table 6: Test of association between BMI and Low back pain duration (3mnths)

			Low bac duration (1	T . 1		Chi-Square T	es ts	
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
	Under	Count	0	4	4				
	weight	% of Total	0.00%	0.40%	0.40%			<0.001	
	Normal	Count	165	218	383		3 46.676		
BMI Class	weight	% of Total	16.70%	22.00%	38.70%				Sig. association
Divit Class	Over weight	Count	292	166	458	3			
		% of Total	29.50%	16.80%	46.30%				
		Count	94	51	145				
	Obese	% of Total	9.50%	5.20%	14.60%				
		Count	551	439	990				
Total		% of Total	55.70%	44.30%	100.00%				

Table 7: Test of association between BMI and Low back pain duration (6mnths)

				ick pain (6mnths)	Total		Chi-Square Te	sts	Informa
			Yes	No		df	Chi-Square value	P-Value (2 sided)	Inference
	Under	Count	1	3	4				
	weight	% of Total	0.10%	0.30%	0.40%				
	Normal	Count	166	217	383				
BMI	weight	% of Total	16.80%	21.90%	38.70%	3	32.055	< 0.001	Sig. association
DIVII	Over	Count	282	176	458				
	weight	% of Total	28.50%	17.80%	46.30%				
		Count	88	57	145				
	Obese	% of Total	8.90%	5.80%	14.60%				
		Count	537	453	990				
Т.	Total	% of Total	54.20%	45.80%	100.00%				

				Low back pain duration (9mnths)			Chi-Square Te	ests	Inference
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Interence
	Under	Count	1	3	4				
	weight	% of Total	0.10%	0.30%	0.40%			<0.001	
N	Normal	Count	157	226	383				Sig. association
BMI	weight	% of Total	15.90%	22.80%	38.70%	3	25.765		
Class	Over	Count	263	195	458	5	5 25.765		
	weight	% of Total	26.60%	19.70%	46.30%				
		Count	82	63	145				
	Obese	% of Total	8.30%	6.40%	14.60%				
		Count	503	487	990				
Total		% of Total	50.80%	49.20%	100.00%				

Table 8: Test of association between BMI and Low back pain duration (9mnths)

Table 9: Test of association between BMI and Low back pain duration (12mnths)

				ack pain (12mnths)	T (1		Chi-Square 7	Informação	
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
	Under	Count	1	3	4			<0.001	
	weight	% of Total	0.10%	0.30%	0.40%				
	Normal weight	Count	138	245	383	3			
BMI		% of Total	13.90%	24.70%	38.70%		30.344		Sig. association
Class	Over	Count	232	226	458		50.544		
	weight	% of Total	23.40%	22.80%	46.30%				
		Count	86	59	145				
	Obese	% of Total	8.70%	6.00%	14.60%				
		Count	457	533	990				
То	Total	% of Total	46.20%	53.80%	100.00 %				

Table 10: Test of association between WHR risk class and Low back pain duration (3mnths)

			Low back pain duration (6mnths)		T 1		Chi-Square Te	Informação	
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
	Low risk	Count	305	295	600				
	LOW FISK	% of Total	30.80%	29.80%	60.60%				
WHR	Moderate risk	Count	71	42	113	2	7.849	0.020	Sig.
risk class		% of Total	7.20%	4.20%	11.40%				association
	TT's Logist	Count	161	116	277				
	High risk	% of Total	16.30%	11.70%	28.00%				
		Count	537	453	990				
Total		% of Total	54.20%	45.80%	100.00 %				

			Low back pain duration (9mnths)				Chi-Square T		
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
		Count	285	315	600				
	Low risk	% of Total	28.80%	31.80%	60.60%		6.67	0.036	
	Moderate	Count	63	50	113				Sig. association
WHR	risk	% of Total	6.40%	5.10%	11.40%	2			
		Count	155	122	277				
	High risk	% of Total	15.70%	12.30%	28.00%				
		Count	503	487	990				
Total		% of Total	50.80%	49.20%	100.00%				

Table 12: Test of association between WHR risk class and Low back pain duration (9mnths)

Table 13: Test of association between WHR risk class and Low back pain duration (12mnths)

			Low back pain duration (12mnths)		T (1		Chi-Square Te	Informação	
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
		Count	260	340	600				
	Low risk	% of Total	26.30%	34.30%	60.60%				
	Moderate	Count	56	57	113				No Sig.
WHR	risk	% of Total	5.70%	5.80%	11.40%	2	4.961	0.084	association
		Count	141	136	277				
	High risk	% of Total	14.20%	13.70%	28.00%				
		Count	457	533	990				
Total	Total	% of Total	46.20%	53.80%	100.00%				

Table 14: Test of association between sex and Low back pain duration (3mnths)

			Low ba duration	·	T (1		Chi-Square Te	ests	Inference
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
		Count	378	307	685				
Sex	Male	% of Total	38.20%	31.00%	69.20%	1	0.202	0.678	No Sig.
Sex		Count	173	132	305	1			association
	Female	% of Total	17.50%	13.30%	30.80%				
		Count	551	439	990				
Total		% of Total	55.70%	44.30%	100.00%				

			Low bac duration (<u> </u>	Tatal		Chi-Square Te	ests	
			duration (6mnths) Yes No		Total	df	Chi-Square value	P-Value (2 sided)	Inference
		Count	377	308	685				
Sex	Male	% of Total	38.10%	31.10%	69.20%	1	0.565	0.452	No Sig.
Sex		Count	160	145	305	1			association
	Female	% of Total	16.20%	14.60%	30.80%				
		Count	537	453	990				
Total		% of Total	54.20%	45.80%	100.00%				

 Table 15: Test of association between sex and Low back pain duration (6mnths)

Table 16: Test of association between sex and Low back pain duration (9mnths)

			Low bac duration (1	Total		Chi-Square Te	ests	Inference
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
	Mala	Count	351	334	685				
C	Male	% of Total	35.50%	33.70%	69.20%	1	0.167	0.721	No Sig.
Sex	Errela	Count	152	153	305	1	0.107	0.731	association
	Female	% of Total	15.40%	15.50%	30.80%				
T-4-1		Count	503	487	990				
Total		% of Total	50.80%	49.20%	100.00%				

Table 17: Test of association between sex and Low back pain duration (12mnths)

			Low back duration (12		T-4-1		Chi-Square Te	ests	Inference
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Interence
		Count	317	368	685				
Ser	Male	% of Total	32.00%	37.20%	69.20%	1	0.012	0.945	No Sig.
Sex		Count	140	165	305	1	0.012		association
	Female	% of Total	14.10%	16.70%	30.80%				
		Count	457	533	990				
Total		% of Total	46.20%	53.80%	100.00%				

			Low ba duration (1	T (1		Chi-Square Te	ests	I.C.
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
	10.20	Count	138	201	339				
	19-29yrs	% of Total	13.90%	20.30%	34.20%				
	20.20	Count	165	146	311				
1	30-39yrs	% of Total	16.70%	14.70%	31.40%	3	75.036	< 0.001	Sig.
Age range	10.10	Count	139	61	200	3			association
	40-49yrs	% of Total	14.00%	6.20%	20.20%				
	50.00	Count	109	31	140				
	+50yrs	% of Total	11.00%	3.10%	14.10%				
Total		Count	551	439	990				
Total		% of Total	55.70%	44.30%	100.00%				

 Table 18: Test of association between age and Low back pain duration (3mnths)

Table 19: Test of association between age and Low back pain duration (6mnths)

			Low ba duration	1	Total		Chi-Square Te	ests	Informação
			YesNo130209		Total	df	Chi-Square value	P-Value (2 sided)	Inference
	10.20	Count	130	209	339				
	19-29yrs	% of Total	13.10%	21.10%	34.20%				
	20.20	Count	157	154	311		91.249	<0.001	
A	30-39yrs	% of Total	15.90%	15.60%	31.40%	3			Sig.
Age range	40-49yrs	Count	138	62	200	3			association
	40-49yis	% of Total	13.90%	6.30%	20.20%				
	+50yrs	Count	112	28	140				
	+30y18	% of Total	11.30%	2.80%	14.10%				
		Count	537	453	990				
Total		% of Total	54.20%	45.80%	100.00 %				

Table 20: Test of association between age and Low back pain duration (9mnths)

			Low bac duration (•	TT (1		Chi-Square Te	ests	Inference
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
		Count	111	228	339				
	19-29yrs	% of Total	11.20%	23.00%	34.20%				
		Count	155	156	311				
A go rango	30-39yrs	% of Total	15.70%	15.80%	31.40%	3	99.288	< 0.001	Sig.
Age range		Count	128	72	200	3	<i>)).</i> 200	<0.001	association
	40-49yrs	% of Total	12.90%	7.30%	20.20%				
		Count	109	31	140				
	+50yrs	% of Total	11.00%	3.10%	14.10%				
		Count	503	487	990				
Total		% of Total	50.80%	49.20%	100.00%				

			Low ba duration (T + 1		Chi-Square Te	ests	
			Yes	No	Total	df	Chi-Square value	P-Value (2 sided)	Inference
		Count	96	243	339				
	19-29yrs	% of Total	9.70%	24.50%	34.20%				
		Count	141	170	311				
Age range	30-39yrs	% of Total	14.20%	17.20%	31.40%	3	103.72	< 0.001	Sig.
Age range		Count	113	87	200	5			association
	40-49yrs	% of Total	11.40%	8.80%	20.20%				
		Count	107	33	140				
	+50yrs	% of Total	10.80%	3.30%	14.10%				
		Count	457	533	990				
Total		% of Total	46.20%	53.80%	100.00 %				

Table 21: Test of association between age and Low back pain duration (12mnths)

Table 22 shows test of variance, and mean difference of height, weight and BMI between the control and other job descriptions

			Coursed					POST-HOC	(DUNNET) TEST
Parameter	Occupation	Mean (SEM)	Grouped Median	Min	Max	Range	ANOVA	Mean Difference (SED)	P value (cal)	Inference
	Business (control)	1.672 (0.006)	1.669	1.4	1.9	0.5		-	-	-
	Drivers	1.711 (0.005)	1.710	1.5	1.9	0.4	Sig	0.039 (0.009)	< 0.0001	Sig
Haight (m)	Officer workers	1.691 (0.006)	1.696	1.40	1.9	.50	(F=25.099,	.0190 (0.009)	0.085	Not Sig
Height (m)	Farmers	1.631 (0.006)	1.632	1.4	1.9	0.5	P>0.001)	-0.0405 (0.009)	< 0.0001	Sig
	Technicians	1.696 (0.006)	1.692	1.5	2.0	0.5		0.024 (0.009)	0.02	Sig
	Total	1.680(0.003)	1.680	1.4	2.0	0.6				
	Business (control)	73.638 (0.725)	71.957	50	125	75		-	-	-
	Drivers	77.53 (0.813)	75.118	60	115	55	Sig	3.893 (1.125)	0.002	Sig
Weight (Lee)	Officer workers	75.436 (0.934)	73.615	48	112	64	(F= 13.846,	1.799 (1.125)	0.313	Not Sig
Weight (kg)	Farmers	69.711 (0.709)	68.692	45	112	67	P>0.001)	-3.927 (1.139)	0.002	Sig
	Technicians	76.06 (0.787)	74.583	54	134	80		2.423 (1.125)	0.102	Not Sig
	Total	74.523 (0.367)	72.388	45	134	89				
	Business (control)	26.376 (0.276)	25.86	17.1	47.62	30.52		-	-	-
	Drivers	26.409 (0.251)	26.05	17.92	38.27	20.35	Not Sig	0.033 (0.374)	1.000	Not Sig
Body mass	Officer workers	26.359 (0.298)	25.935	19	43.6	24.6	(F= 0.264,	-0.017 (0.374)	1.000	Not Sig
index (kg/m2)	Farmers	26.064 (0.246)	25.61	19.72	42.2	22.48	P=0.901)	-0.312 (0.379)	0.828	Not Sig
,	Technicians	26.305 (0.255)	26.135	17.86	45.83	27.97		-0.071 (0.374)	0.999	Not Sig
	Total	26.305 (0.119)	25.887	17.1	47.62	30.52				

 Table 23: Test of variance, and mean difference of waist circumference, hip circumference and waist-hip ratio

 between the control and other job descriptions

Parameter	Occupation	Mean	Grouped	Min	Max	D	ANOVA	POST-HOC (DU TEST	NNET)	Inference
Parameter	Occupation	(SEM)	Median	IVIIII	Iviax	Range	ANOVA	Mean Difference (SED)	Sig.	
	Business (control)	85.883 (0.754)	84.364	42	133	91		-	-	-
	Drivers	90.45 (0.743)	89.059	67	130	63		4.568 (0.999)	< 0.001	Sig
Waist	Officer workers	89.675 (0.715)	88.842	67	125	58	Sig (F= 8.764, P<0.001)	3.793 (0.999)	< 0.001	Sig
circumference (cm)	Farmers	87.30 (0.586)	86.588	72	120	48	1 -0.001)	1.418 (1.012)	0.43	Not Sig
	Technicians	90.63 (0.726)	90.75	55	130	75		4.748 (0.999)	< 0.001	Sig
	Total									
	Business (control)	96.825 (0.594)	96.6842	42	127	85		-	-	-
	Drivers	98.91 (0.628)	98.7778	40	125	85		2.085 (0.810)	0.036	Sig
Hip	Officer workers	99.84 (0.541)	99	81	121	40	Sig (F= 6.818, P<0.001)	3.015 (0.810)	< 0.001	Sig
circumference (cm)	Farmers	96.184 (0.588)	96.1304	64	127	63	1 -0.001)	-0.641(0.821)	0.852	Not Sig
	Technicians	98.505 (0.524)	99.3462	51	126	75		1.68 (0.810)	0.123	Not Sig
	Total	98.072 (0.261)	98.0333	40	127	87				
	Business (control)	0.881 (0.006)	0.8791	0.13	1.1	0.97		-	-	-
	Drivers	1.820 (0.644)	0.9097	0.68	98	97.32		0.939 (0.594)	0.323	Not Sig
	Officer workers	0.898 (0.004)	0.89	0.77	1.07	0.3	Sig (F= 1.741, P=0.134)	0.016 (0.594)	1.000	Not Sig
Waist-hip ratio	Farmers	0.944 (0.044)	0.8947	0.81	9.29	8.48	r=0.134)	0.063 (0.602)	1.000	Not Sig
	Technicians	2.008 (0.676)	0.9195	0.79	96	95.21		1.127 (0.594)	0.179	Not Sig
	Total	1.314 (0.189)	0.8991	0.13	98	97.87				-

DISCUSSION

This study was done to evaluate the relationship between low back pain duration and selected anthropometric parameters (such as age, height, weight, BMI, WHR) among workers in Port Harcourt.

The frequency distribution of three to six months duration of LBP as shown in Table 2 and Table 3 shows that in the control group, LBP was lower than that of farmers and office workers. This is because the work done by farmers has to do with awkward posture. This agreed with the report by ^{[2], [10]} that flexion or lateral bending of the trunk and bending and rotation of the trunk are considered potential risk factors for low back pain. More of the technicians, present with LBP compared to drivers. The high percentage of LBP among drivers agrees with the report of Vasant ^[13] that among the LBP sufferers 73% of drivers and 50.5% of non-drivers had chronic LBP and this difference was statistically significant. Scouting and lifting might be responsible for this among technicians. For 3 to 6 months duration, a higher percentage of farmers on the average reported LBP compared to other occupations. For the same period, there was significant association (p<0.001) between various occupations and control.

In table 4 the frequency of LBP was lower among control than farmers and office workers but in this case, drivers had more symptoms than technicians while in Table 5 drivers and technicians had the same frequency for pain. Significant association (p<0.001) existed in all the various occupation and control. These results were similar to the findings of a recent study that reported

that there was an association of LBP among taxi drivers with self-perceived job stress (OR 1.75; 95% CI 1.20-2.55) and job dissatisfaction (OR 1.44; 95% CI 1.05-1.98). ^[14] They are also in agreement with the reports of Davis ^[15] and Damian ^[16] who observed that job satisfaction and job stress were more consistently associated with the development of LBP than psychosocial work characteristics themselves.

LBP duration as shown in Table 6 – 9 were common between overweight and obese people than underweight and normal weight. This implies that overweight and obesity increase the risk of LBP. Concerning body proportions, more of the subjects in the overweight category were found to have LBP from 3 to 12 months duration. This report agrees with Deyo and Winstein ^[17] which reported an increased prevalence of LBP particularly in obese subjects (BMI > 29 kg/m2), while Bener ^[18] reported that obesity is moderately associated with LBP.

LBP was more frequent within 30-39 and 40-49 years, and lowest within 19-29 years increasing with aging with respect to three, six, nine and twelve months duration of LBP. Significant association (p<0.001) was observed between age and LBP duration. Similar findings were made by Buckwalter ^[11]. LBP was common within age 30-39 years followed by 40-49 years.

From Table 14 - 17 male workers were mostly found to report LBP compared with female workers. The 1988 National Health Survey in the USA reported a higher prevalence of low back pain in male workers ^[19] and a study on LBP in Japan showed that the incidence in male workers was about four times greater than in female workers.^[20] But in a French study, LBP occurred more often and was more severe among women^[21]. In line with our study, there was no significant association between sex and LBP duration as also reported by Shyamal *et al*^[22]. This report supports our findings.

Concerning Waist Hip Ratio (WHR), workers at low, moderate and high-risk had LBP. More of low risk workers had low back pain compared to the moderate and high-risk workers. Significant association was observed between low back pain duration and WHR for 3, 6 and 9 months, but not for 12 months duration.

CONCLUSION

It may be concluded from the present study that overweight is significantly associated with LBP duration. In addition, it was found that occupation, and age greatly influence the incidence of low back pain. Waist-to hip ratio, a determiner of internal body fat, was equally found to be weakly associated with duration of low back pain, but sex has no influence on low back pain.

CONFLICT OF INTEREST

There was no conflict of interest among the authors.

REFERENCES

- Leboeuf, Y, de C, Lauritsen, JM. The prevalence of low back pain in the literature, A Structural Review of 26 Nordic Studies; From 1954-1993 1995; 20,2112-2118.
- 2. Vingard, E, Nachemson, A. Work related influence on neckand low back pain, Lippicott Williams and Wilkins, 2000; 97-126.
- Croft, PR, Macferlance, GJ, Papageorgiou, AC, Thomas E and Silman, AJ. Outcome of low back pain in general practice, A prospective study, BMJ 1998; 316, pp. 1356-1359.
- 4. Hansson, EK, and Hansson, TH. The costs for persons sick-listed more than one month because of low back or neck problems, A two-year prospective study of Swedish patient, Eur Spine 2005; 14,337-345.
- 5. Reza, A, Nicoll, S. Characterization of novel photocrosslink carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells, Acta Biomater 2010; 6 (1), 129–86.
- Jimoh, A., Omokanye, L, Salaudeen, A. Saidu, Saka, MJ, Akinwale, Balogun, O, and Sulaiman, Z. Prevalence of low back pain among pregnant women in Ilorin, Nigeria, 2013; 4(4): 23-26.
- Deyo, RA, and Weinstein, J. Low back pain, The New England Journal of Medicine, 2001; 344 (5): 363–70.
- Koes, BW, Tulder, MW, Lin, CW, Macedo, LG, McAuley, J, Maher, C. An updated overview of clinical guidelines for the management of nonspecific low back pain in primary care, European Spine Journal 2010; 19 (12): 2075.

- 9. Wedell, G. The black pain revolution, Churchill Livingstone, Edinburgh, 1998.
- 10. Bovenzi, M, and Hulcchof, CT. An update review of epidemiologic studies on the relationship between exposure to whole- body vibration and low back pain, In Arch Occup Environ Health 1999; 72, 351-365.
- 11. Buckwalter, JA. Aging and degenerative of the human intervertebral disc, Spine 1995; 20, 1307-1314.
- Andersson, GBJ. Epidemiological features of chronic low-back pain, Lancet 1999; 354 (9178): 581-585.
- 13. Vasant, J. Prevalence of backache among bus drivers and associated modifiable risk factors in latur, Maharashtra 2012; 40, 695011.
- Chen, JC, Chang, WR, Chang, W, and Christiani, D. Occupational factors associated with low back pain in urban taxi drivers, Occup Med (Lond) 2005; 55, 535-40.
- 15. Davis, KG, and Heaney, CA. The relationship between psychological work characteristics and low back pain, underlying methodological issues, Clin Biomech (Bristol, Avon) 2000; 286, 760-765.
- Damian, H. Christopher, B, Gail, W, Lyn, M, Peter, B, Fiona, B, Anthony, W, Theo, V, and Rachelle, B. a systematic review of the global prevalence of low back pain, arthritis & rheumatism, 2012; 64 (6), pp 2028–2037.
- 17. Deyo, RA. What can history and physical examination tell usabout low back, J Am Med Assoc 1992; 286,270-765.
- Bener A, Alwash R, Gaber T, and Lovasz, G. Obesity and low back pain, Coll Anthropol 2003; 27(1):95-104.
- 19. Kuwashima, A, Aizawa, Y, Nakamura, K, Watanabe, M. National survey on accidental low back pain in work place, A 5-year prospective study, Eur J Appl Physiol 1997; 73, 452-458.
- Guo, HR, Chang, YC, Yeh, WY, Chen, CW, and Guo, YL. Prevalence of musculoskeletal disorders among workers in Taiwan, A national wide study, J Occup Health 2004; 46, 26-36.
- Luca, V. Francesco, M, Fabio, Z, Manuela, G, Stefano, N, Paolo, C. Effect of obesity and low back pain on spinal mobility, Vismara *et al.* Journal of Neuro Engineering and Rehabilitation 2010; 7(1): 3.
- 22. Lex, M, Bouter, Maurits, W, Tulder, V, Bart, W, Koes. Methodologic issues in low back pain research in primary care, spine 1998; 23 (18): 2014-2020.